How to Predict if You’re Going to Win or Not


      Let’s just say that I know how often you’re going to win on Craps, or on that game of blackjack, and by the end of this article, you’ll know too. You might remember hearing about probability in your 6th grade math class, or you might remember staring out the window in 6th grade because, you know, Math is boring. But Math isn’t boring when it can predict the future.

Probability: Assigning a Number

      So how do we use Probability to predict the future? Well the future is messy and we can’t predict events with absolute certainty. Instead, what we can do, is predict how likely it’ll be that certain events will happen. And that’s the definition of Probability, measuring the likelihood that a certain event will occur. But how do you measure an event? For example, how do you measure a party by using math? You’re actually measuring whether the event occurred or not. Did your party happen? Did all of your friends show up and eat, drink and be merry? Or did no one show up and that’s when you remembered that you had no friends and then ate all of the cookies? If the party or the event happened then you would assign it with a number one. If the party or event didn’t happen, then you would assign it with the number zero. So loosely speaking, zero means that it was impossible for the event to ever happen, while one indicates that the event is definitely going to happen.

      Okay, so now we know that if an event or party occurs it’s a 1 and if it never happened, then it’s a 0. But what’s the point? Why even assign numbers to events anyway? Well that’s part of the magic and charm of Probability; it makes us assign meaningful numbers to things that no one can actually really know anything about. Assigning an event with either 0 or 1, makes it possible for us to create percentages on what may or may not happen with the event. It allows us to make real, measurable conclusions about random events, using math.

The Coin Toss

      The coin toss is a great way of demonstrating Probability because we’re assigning measurable conclusions to random events and what’s more random then a coin toss? No one knows how the coin will fall, but that doesn’t mean we can’t figure out the math. There are two possible outcomes, heads or tails; and out of those 2 outcomes, only 1 is possible, which means that we have a 1 in 2 chance that the coin will land on heads. Because it’s math, we can say “1 in 2 chance” several different ways. 1 in 2 can also be written as ½ and the equivalent to one half is 0.50 which is also 50% or 50/50. So if we flip that coin 100 times, then we can expect it to land on heads roughly around 50 and the same can be said for tails. Remember that it’s normal for us to expect some kind of variation around these numbers.

      Now that we know the probability for a coin flip, how do we apply this knowledge to other random events? I mean, how on earth is Probability going to predict that my dog actually me with numbers next to me wants to be a fire truck or if my snake is going to escape her cage? Well, ask yourself these questions when trying to figure out the probability of an event. What are the number of outcomes that can happen with a certain event? So the coin toss was our event and we could only have one winner at a time. Either heads was the winner or tails was the winner, me with numbers next to me which means only one of them could be the winner, not both of them. So the answer to that question is 1. We’ll place the "1" here and since we’re on to our second question, we’ll place a divider next to it so that way we can tell the difference between the two numbers. The second question is how many possible outcomes are there? With the coin flip, there were 2 possible outcomes, heads and tails. me with numbers next to me So we’ll put 2 next to the divider and that gives us ½ which if you remember is also the odds for a coin toss, which is 50/50 which can also be written as 50% or ½ .

Remember to tip your dealer!